neuromancer.psl.autonomous module

Nonlinear ODEs. Wrapper for emulator dynamical models

  • Internal Emulators - in house ground truth equations

  • External Emulators - third party models

References

class neuromancer.psl.autonomous.Autoignition(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

ODE describing pulsating instability in open-ended combustor.

  • Koch, J., Kurosaka, M., Knowlen, C., Kutz, J.N., “Multiscale physics of rotating detonation waves: Autosolitons and modulational instabilities,” Physical Review E, 2021

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.Brusselator1D(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Brusselator

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.ChuaCircuit(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Chua’s circuit

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.DoublePendulum(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Double Pendulum

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.Duffing(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Duffing equation

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.LorenzSystem(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Lorenz System

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.LotkaVolterra(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Lotka–Volterra equations Also known as the predator–prey equations

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.Pendulum(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Simple pendulum

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.RosslerAttractor(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Rössler attractor

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.ThomasAttractor(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Thomas’ cyclically symmetric attractor

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.UniversalOscillator(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Harmonic oscillator

equations(t, x)[source]
property params
class neuromancer.psl.autonomous.VanDerPol(exclude_norms=['Time'], backend='numpy', requires_grad=False, seed: int | Generator = 59, set_stats=True)[source]

Bases: ODE_Autonomous

Van der Pol oscillator

equations(t, x)[source]
property params