Source code for neuromancer.psl.autonomous

"""
Nonlinear ODEs. Wrapper for emulator dynamical models

    * Internal Emulators - in house ground truth equations
    * External Emulators - third party models

References:

    * https://en.wikipedia.org/wiki/List_of_nonlinear_ordinary_differential_equations
    * https://en.wikipedia.org/wiki/List_of_dynamical_systems_and_differential_equations_topics
"""
import inspect, sys
from neuromancer.psl.base import ODE_Autonomous, cast_backend


[docs] class UniversalOscillator(ODE_Autonomous): """ Harmonic oscillator * https://en.wikipedia.org/wiki/Harmonic_oscillator * https://sam-dolan.staff.shef.ac.uk/mas212/notebooks/ODE_Example.html """ @property def params(self): variables = {'x0': [1.0, 0.0]} constants = {'ts': 0.1} parameters = {'mu': 2., 'omega': 1.} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = x[1] dx2 = -2.*self.mu*x[1] - x[0] + self.B.core.cos(self.omega*t) return [dx1, dx2]
[docs] class Pendulum(ODE_Autonomous): """ `Simple pendulum <https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html>`_ """ @property def params(self): variables = {'x0': [0., 1.],} constants = {'ts': 0.1} parameters = {'g': 9.81, 'f': 3,} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): theta = x[0] omega = x[1] return [omega, -self.f*omega - self.g*self.B.core.sin(theta)]
[docs] class DoublePendulum(ODE_Autonomous): """ `Double Pendulum <https://scipython.com/blog/the-double-pendulum/>`_ """ @property def params(self): variables = {'x0': [3. * self.B.core.pi / 7., 0., 3. * self.B.core.pi / 4., 0.],} constants = {'ts': 0.1} parameters = {'L1': 1., 'L2': 1., 'm1': 1., 'm2': 1., 'g': 9.81, } meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): theta1 = x[0] z1 = x[1] theta2 = x[2] z2 = x[3] c, s = self.B.core.cos(theta1 - theta2), self.B.core.sin(theta1 - theta2) dx1 = z1 dx2 = (self.m2 * self.g * self.B.core.sin(theta2) * c - self.m2 * s * (self.L1 * z1 ** 2 * c + self.L2 * z2 ** 2) - (self.m1 + self.m2) * self.g * self.B.core.sin(theta1)) / self.L1 / (self.m1 + self.m2 * s ** 2) dx3 = z2 dx4 = ((self.m1 + self.m2) * (self.L1 * z1 ** 2 * s - self.g * self.B.core.sin(theta2) + self.g * self.B.core.sin(theta1) * c) + self.m2 * self.L2 * z2 ** 2 * s * c) / self.L2 / (self.m1 + self.m2 * s ** 2) return [dx1, dx2, dx3, dx4]
[docs] class LorenzSystem(ODE_Autonomous): """ Lorenz System * https://en.wikipedia.org/wiki/Lorenz_system#Analysis * https://ipywidgets.readthedocs.io/en/stable/examples/Lorenz%20Differential%20Equations.html * https://scipython.com/blog/the-lorenz-attractor/ * https://matplotlib.org/3.1.0/gallery/mplot3d/lorenz_attractor.html """ @property def params(self): variables = {'x0': [1.0, 1.0, 1.0]} constants = {'ts': 0.1} parameters = {'sigma': 10., 'beta': 8./3., 'rho': 28.0} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = self.sigma*(x[1] - x[0]) dx2 = x[0]*(self.rho - x[2]) - x[1] dx3 = x[0]*x[1] - self.beta*x[2] return [dx1, dx2, dx3]
[docs] class VanDerPol(ODE_Autonomous): """ Van der Pol oscillator * https://en.wikipedia.org/wiki/Van_der_Pol_oscillator * http://kitchingroup.cheme.cmu.edu/blog/2013/02/02/Solving-a-second-order-ode/ """ @property def params(self): variables = {'x0': [1., 2.]} constants = {'ts': 0.1} parameters = {'mu': 1.} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = self.mu*(x[0] - 1./3.*x[0]**3 - x[1]) dx2= x[0]/self.mu return [dx1, dx2]
[docs] class ThomasAttractor(ODE_Autonomous): """ Thomas' cyclically symmetric attractor * https://en.wikipedia.org/wiki/Thomas%27_cyclically_symmetric_attractor """ @property def params(self): variables = {'x0': [1., -1., 1.]} constants = {'ts': 0.1} parameters = {'b': 0.208186} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = self.B.core.sin(x[1]) - self.b*x[0] dx2 = self.B.core.sin(x[2]) - self.b*x[1] dx3 = self.B.core.sin(x[0]) - self.b*x[2] return [dx1, dx2, dx3]
[docs] class RosslerAttractor(ODE_Autonomous): """ `Rössler attractor <https://en.wikipedia.org/wiki/R%C3%B6ssler_attractor>`_ """ @property def params(self): variables = {'x0': [0., 0., 0.]} constants = {'ts': 0.1} parameters = {'a': 0.2, 'b': 0.2, 'c': 5.7,} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = - x[1] - x[2] dx2 = x[0] + self.a*x[1] dx3 = self.b + x[2]*(x[0]-self.c) return [dx1, dx2, dx3]
[docs] class LotkaVolterra(ODE_Autonomous): """ `Lotka–Volterra equations <https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations>`_ Also known as the predator–prey equations """ @property def params(self): variables = {'x0': [5., 100.]} constants = {'ts': 0.1} parameters = {'a': 1.1, 'b': 0.4, 'c': 0.1, 'd': 0.4,} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = self.a*x[0] - self.b*x[0]*x[1] dx2 = self.c**x[0]*x[1] - self.d*x[1] return [dx1, dx2]
[docs] class Brusselator1D(ODE_Autonomous): """ `Brusselator <https://en.wikipedia.org/wiki/Brusselator>`_ """ @property def params(self): variables = {'x0': [1., 1.]} constants = {'ts': 0.1} parameters = {'a': 1., 'b': 3.} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = self.a + x[1]*x[0]**2 -self.b*x[0] - x[0] dx2 = self.b*x[0] - x[1]*x[0]**2 return [dx1, dx2]
[docs] class ChuaCircuit(ODE_Autonomous): """ Chua's circuit * https://en.wikipedia.org/wiki/Chua%27s_circuit * https://www.chuacircuits.com/matlabsim.php """ @property def params(self): variables = {'x0': [0.7, 0.0, 0.0],} constants = {'ts': 0.1} parameters = {'a': 15.6, 'b': 28., 'm0': -1.143, 'm1': -0.714,} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): fx = self.m1*x[0] + 0.5*(self.m0 - self.m1)*(self.B.core.abs(x[0] + 1) - self.B.core.abs(x[0] - 1)) dx1 = self.a*(x[1] - x[0] - fx) dx2 = x[0] - x[1] + x[2] dx3 = -self.b*x[1] return [dx1, dx2, dx3]
[docs] class Duffing(ODE_Autonomous): """ `Duffing equation <https://en.wikipedia.org/wiki/Duffing_equation>`_ """ @property def params(self): variables = {'x0': [1.0, 0.0]} constants = {'ts': 0.01} parameters = {'alpha': 1., 'beta': 5., 'delta': 0.02, 'gamma': 8., 'omega': 0.5,} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): dx1 = x[1] dx2 = - self.delta*x[1] - self.alpha*x[0] - self.beta*x[0]**3 + self.gamma*self.B.core.cos(self.omega*t) return [dx1, dx2]
[docs] class Autoignition(ODE_Autonomous): """ ODE describing pulsating instability in open-ended combustor. * Koch, J., Kurosaka, M., Knowlen, C., Kutz, J.N., "Multiscale physics of rotating detonation waves: Autosolitons and modulational instabilities," Physical Review E, 2021 """ @property def params(self): variables = {'x0': [1., 0.7],} constants = {'ts': 0.1} parameters = {'alpha': 0.3, 'uc': 1.1, 's': 1., 'k': 1., 'r': 5., 'q': 6.5, 'up': 0.55, 'e': 1.} meta = {} return variables, constants, parameters, meta
[docs] @cast_backend def equations(self, t, x): reactionRate = self.k * (1.0 - x[1]) * self.B.core.exp((x[0] - self.uc) / self.alpha) regenRate = self.s * self.up * x[1] / (1.0 + self.B.core.exp(self.r * (x[0] - self.up))) dx1 = self.q * reactionRate - self.e * x[0] ** 2 dx2 = reactionRate - regenRate return [dx1, dx2]
systems = dict(inspect.getmembers(sys.modules[__name__], lambda x: inspect.isclass(x))) systems = {k: v for k, v in systems.items() if issubclass(v, ODE_Autonomous) and v is not ODE_Autonomous} if __name__ == '__main__': for n, system in systems.items(): print(n) s = system() out = s.simulate(nsim=5) print({k: v.shape for k, v in out.items()})