cluster_enrichment
cluster_enrichment.RdCluster enrichment Run enrichment (Fisher's exact) on clusters (lists of identifier groups)
Arguments
- eset
is an SummarizedExperiment containing data that is clustered
- assay_name
is the name of the assay
- geneset
is a GeneSet object for pathway annotation
- clusters
is a list of clusters (gene lists) to calculate enrichment on, generally the result of the `cutree` function
- sigfilter
minimum significance threshold default is .05
Details
This function will calculate enrichment (Fisher's exact test for membership overlap) on
a series of lists of genes, such as from a set of clusters. The results are returned as
a list of results matrices in the order of the input clusters.
Examples
library(leapR)
# read in the example transcriptomic data
url <- "https://api.figshare.com/v2/file/download/56536214"
tdata <- download.file(url,method='libcurl',destfile='transData.rda')
load('transData.rda')
p <- file.remove("transData.rda")
# read in the pathways
data("ncipid")
# for the example we will limit the number of transcripts considered
#- arbitrarily in this case
transdata <- SummarizedExperiment::assay(tset,'transcriptomics')
transdata[which(is.na(transdata),arr.ind=TRUE)]<-0.0
# perform heirarchical clustering on the data
transdata.hc <- hclust(dist(transdata), method="ward.D2")
transdata.hc.clusters <- cutree(transdata.hc, k=5)
clust.list <- lapply(seq_len(5), function(x) {
return(names(which(transdata.hc.clusters==x)))})
#calculates enrichment for each of the clusters individually a
#and returns a list of enrichment results
transdata.hc.enrichment <- leapR::cluster_enrichment(eset=tset,
assay_name='transcriptomics',
geneset=ncipid,
clusters=clust.list)