neuromancer.slim.butterfly.butterfly_multiply module
- class neuromancer.slim.butterfly.butterfly_multiply.ButterflyFactorMult(*args, **kwargs)[source]
Bases:
Function
- static backward(ctx, grad)[source]
- Parameters:
grad – (batch_size, 2, n) if real or (batch_size, 2, n, 2) if complex
- Returns:
(2, 2, n) if real or (2, 2, n, 2) if complex d_input: (batch_size, 2, n) if real or (batch_size, 2, n, 2) if complex
- Return type:
d_twiddle
- static forward(ctx, twiddle, input)[source]
Multiply by a single factor. :param twiddle: (2, 2, n) if real or (2, 2, n, 2) if complex :param input: (batch_size, 2, n) if real or (batch_size, 2, n, 2) if complex
- Returns:
(batch_size, 2, n) if real or (batch_size, 2, n, 2) if complex
- Return type:
output
- class neuromancer.slim.butterfly.butterfly_multiply.ButterflyMult(*args, **kwargs)[source]
Bases:
Function
- static backward(ctx, grad)[source]
- Parameters:
grad – (batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
twiddle – (nstack, n - 1, 2, 2) if real or (nstack, n - 1, 2, 2, 2) if complex
backward (output + intermediate values for) – (log n + 1, batch_size, nstack, n) if real or (log n + 1, batch_size, nstack, n, 2) if complex
- Returns:
(nstack, n - 1, 2, 2) if real or (nstack, n - 1, 2, 2, 2) if complex d_input: (batch_size, n) if real or (batch_size, n, 2) if complex
- Return type:
d_twiddle
- static forward(ctx, twiddle, input, increasing_stride=True)[source]
- Parameters:
twiddle – (nstack, n - 1, 2, 2) if real or (nstack, n - 1, 2, 2, 2) if complex
input – (batch_size, n) if real or (batch_size, n, 2) if complex
increasing_stride – whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
- Returns:
(batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
- Return type:
output
- class neuromancer.slim.butterfly.butterfly_multiply.ButterflyMultInplace(*args, **kwargs)[source]
Bases:
Function
- static backward(ctx, grad)[source]
Define a formula for differentiating the operation with backward mode automatic differentiation.
This function is to be overridden by all subclasses. (Defining this function is equivalent to defining the
vjp
function.)It must accept a context
ctx
as the first argument, followed by as many outputs as theforward()
returned (None will be passed in for non tensor outputs of the forward function), and it should return as many tensors, as there were inputs toforward()
. Each argument is the gradient w.r.t the given output, and each returned value should be the gradient w.r.t. the corresponding input. If an input is not a Tensor or is a Tensor not requiring grads, you can just pass None as a gradient for that input.The context can be used to retrieve tensors saved during the forward pass. It also has an attribute
ctx.needs_input_grad
as a tuple of booleans representing whether each input needs gradient. E.g.,backward()
will havectx.needs_input_grad[0] = True
if the first input toforward()
needs gradient computed w.r.t. the output.
- static forward(ctx, twiddle, input, increasing_stride=True)[source]
Experimental in-place implementation that does not store intermediate results. Instead, the intermediate results are computed from the output during the backward pass. :param twiddle: (n - 1, 2, 2) if real or (n - 1, 2, 2, 2) if complex :param input: (batch_size, n) if real or (batch_size, n, 2) if complex :param increasing_stride: whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or
decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
- Returns:
(batch_size, n) if real or (batch_size, n, 2) if complex
- Return type:
output
- class neuromancer.slim.butterfly.butterfly_multiply.ButterflyMultUntied(*args, **kwargs)[source]
Bases:
Function
- static backward(ctx, grad)[source]
- Parameters:
grad – (batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
twiddle – (nstack, log 2, n / 2, 2, 2) if real or (nstack, log 2, n / 2, 2, 2, 2) if complex
backward (output + intermediate values for) – (log n + 1, batch_size, nstack, n) if real or (log n + 1, batch_size, nstack, n, 2) if complex
- Returns:
(nstack, log 2, n / 2, 2, 2) if real or (nstack, log 2, n / 2, 2, 2, 2) if complex d_input: (batch_size, n) if real or (batch_size, n, 2) if complex
- Return type:
d_twiddle
- static forward(ctx, twiddle, input, increasing_stride=True)[source]
- Parameters:
twiddle – (nstack, log 2, n / 2, 2, 2) if real or (nstack, log 2, n / 2, 2, 2, 2) if complex
input – (batch_size, n) if real or (batch_size, n, 2) if complex
increasing_stride – whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
- Returns:
(batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
- Return type:
output
- neuromancer.slim.butterfly.butterfly_multiply.butterfly_mult(twiddle, input, increasing_stride=True, return_intermediates=False)
- Parameters:
twiddle – (nstack, n - 1, 2, 2) if real or (nstack, n - 1, 2, 2, 2) if complex
input – (batch_size, n) if real or (batch_size, n, 2) if complex
increasing_stride – whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
return_intermediates – whether to return all the intermediate values computed, for debugging
- Returns:
(batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
- Return type:
output
- neuromancer.slim.butterfly.butterfly_multiply.butterfly_mult_factors(twiddle, input, increasing_stride=True, return_intermediates=False)[source]
Implementation that have separate kernels for each factor, for debugging. :param twiddle: (n - 1, 2, 2) if real or (n - 1, 2, 2, 2) if complex :param input: (batch_size, n) if real or (batch_size, n, 2) if complex :param increasing_stride: whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or
decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
- Parameters:
return_intermediates – whether to return all the intermediate values computed, for debugging
- Returns:
(batch_size, n) if real or (batch_size, n, 2) if complex
- Return type:
output
- neuromancer.slim.butterfly.butterfly_multiply.butterfly_mult_torch(twiddle, input, increasing_stride=True, return_intermediates=False)[source]
- Parameters:
twiddle – (nstack, n - 1, 2, 2) if real or (nstack, n - 1, 2, 2, 2) if complex
input – (batch_size, n) if real or (batch_size, n, 2) if complex
increasing_stride – whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
return_intermediates – whether to return all the intermediate values computed, for debugging
- Returns:
(batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
- Return type:
output
- neuromancer.slim.butterfly.butterfly_multiply.butterfly_mult_untied(twiddle, input, increasing_stride=True, return_intermediates=False)
- Parameters:
twiddle – (nstack, log n, n / 2, 2, 2) if real or (nstack, log n, n / 2, 2, 2, 2) if complex
input – (batch_size, n) if real or (batch_size, n, 2) if complex
increasing_stride – whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
return_intermediates – whether to return all the intermediate values computed, for debugging
- Returns:
(batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
- Return type:
output
- neuromancer.slim.butterfly.butterfly_multiply.butterfly_mult_untied_torch(twiddle, input, increasing_stride=True, return_intermediates=False)[source]
- Parameters:
twiddle – (nstack, log n, n / 2, 2, 2) if real or (nstack, log n, n / 2, 2, 2, 2) if complex
input – (batch_size, n) if real or (batch_size, n, 2) if complex
increasing_stride – whether to multiply with increasing stride (e.g. 2, 4, …, n/2) or decreasing stride (e.g., n/2, n/4, …, 2). Note that this only changes the order of multiplication, not how twiddle is stored. In other words, twiddle[@log_stride] always stores the twiddle for @stride.
return_intermediates – whether to return all the intermediate values computed, for debugging
- Returns:
(batch_size, nstack, n) if real or (batch_size, nstack, n, 2) if complex
- Return type:
output