Source code for classes.element_profiler

from deep_data_profiler.classes.profile import Profile
from deep_data_profiler.classes.torch_profiler import TorchProfiler
from deep_data_profiler.utils import get_index, submatrix_generator
import numpy as np
import scipy.sparse as sp
import torch
from typing import Callable, Dict, List, Optional, Tuple, Union
import warnings


[docs]class ElementProfiler(TorchProfiler): """ ElementProfiler identifies influential elements of an activation tensor. Influential element neurons are identified by their value or absolute value. Contributing neurons in the previous layer are the elements in the receptive field with the greatest values whose sum reaches a specified threshold, or percentage of the value of the influential element. """
[docs] def influence_generator( self, activations: Dict[str, torch.Tensor], use_abs: bool = False, ) -> Callable[[int, float], Tuple[sp.coo_matrix, sp.coo_matrix]]: """ Parameters ---------- activations : dict of tensors use_abs : boolean, default=False If True, use the absolute value of element activations to determine influence Returns ------- influential_neurons : function A function that will pick out the most influential neurons in a layer up to some threshold """ def influential_neurons( layer_number: int, threshold: float = 0.1 ) -> Tuple[sp.coo_matrix, sp.coo_matrix]: """ Parameters ---------- layer_number : int threshold : float, default=0.1 Returns ------- influential_neurons : sp.coo_matrix Matrix representing the influential neurons within the threshold influential_weights : sp.coo_matrix Matrix assigning weights to each influential neuron according to its contribution to the threshold """ if layer_number == 0: return [] hd, nd = self.sght[layer_number] # head (hd) and tail (nd) modules in layer if nd: with torch.no_grad(): # get activations of head and tail modules hd = activations[hd] nd = activations[nd] # only consider a neuron as potentially influential if its activation # value in the head and tail modules have the same sign t = torch.where( torch.eq(hd > 0, nd > 0).to(self.device), nd, torch.zeros(nd.shape, device=self.device), ) if use_abs: # take the absolute value of all activations t = torch.abs(t) # check if module is a conv. layer is_conv = len(t.shape) == 4 # define dimensions if is_conv: num_channels, h, w = t[0].shape else: num_elements = t[0].shape[0] # if module is a conv. layer, consider the max val element from each channel if is_conv: channel_vals = t.view(1, num_channels, h * w) m, m_idx = torch.max(channel_vals, dim=-1) # otherwise if module is fully connected, consider all elements else: m = t if not use_abs: # ignore negative elements when not taking absolute value m = torch.where( m > 0, m, torch.zeros(m.shape, device=self.device) ) # sort by influence ordsmat_vals, ordsmat_indices = torch.sort(m, descending=True) # take the cumsum and normalize by total contribution cumsum = torch.cumsum(ordsmat_vals, dim=1) totalsum = cumsum[:, -1] # find the indices within the threshold goal bool_accept = cumsum / totalsum <= threshold # find the number of accepted neurons accept = bool_accept.sum() # if accept == m.shape[1] (num_channels if conv., num_elements if FC), # all values are taken as influential # subtract 1 in this case to avoid IndexError when adding additional accept if accept == m.shape[1]: accept -= 1 # add additional accept, ie accept + 1 bool_accept[:, accept] = True # normalize by final accepted cumsum ordsmat_vals /= cumsum[:, accept] # grab accepted neuron values and indices ordsmat_vals = ordsmat_vals[bool_accept] ordsmat_indices = ordsmat_indices[bool_accept] # send values and indices to cpu if necessary if self.device != "cpu": ordsmat_vals = ordsmat_vals.cpu() ordsmat_indices = ordsmat_indices.cpu() if is_conv: m_idx = m_idx.cpu() # define shape depending on if module is conv. or FC if is_conv: shape = (num_channels, h * w) # trace max val from accepted channel back to element index indices = (ordsmat_indices, m_idx[:, ordsmat_indices].squeeze()) else: shape = (1, num_elements) indices = (np.zeros(accept + 1), ordsmat_indices) # construct weights and counts sparse matrices influential_weights = sp.coo_matrix( (ordsmat_vals, indices), shape=shape ) influential_weights.eliminate_zeros() influential_neurons = sp.coo_matrix( ( np.ones(influential_weights.data.shape), (influential_weights.row, influential_weights.col), ), shape=influential_weights.shape, dtype=int, ) return influential_neurons, influential_weights else: return sp.coo_matrix((0, 0)), sp.coo_matrix((0, 0)) return influential_neurons
[docs] def create_profile( self, x: torch.Tensor, threshold: float = 0.1, layers_to_profile: Union[list, Tuple] = None, use_abs: bool = False, ) -> Profile: """ Generate a profile for a single input data x Parameters ---------- x : torch.Tensor input to model being profiled layers_to_profile : list or tuple list of specific layers to profile or tuple with first,last layers (exclusive of last) to profile and all layers inbetween threshold : float, default=0.1 Percentage of contribution to track in a profile. use_abs : boolean, default=False If True, use the absolute value of element activations to determine influence Returns ------- Profile profile contains neuron_counts, neuron_weights, synapse_counts, and synapse_weights across layers in layers_to_profile. Corresponding number of images = 1 """ ( neuron_counts, neuron_weights, synapse_counts, synapse_weights, activation_shapes, ) = self.build_dicts( x, infl_threshold=threshold, contrib_threshold=threshold, layers_to_profile=layers_to_profile, use_abs=use_abs, ) return Profile( neuron_counts=neuron_counts, neuron_weights=neuron_weights, synapse_counts=synapse_counts, synapse_weights=synapse_weights, activation_shapes=activation_shapes, pred_dict=self.pred_dict, num_inputs=1, neuron_type="element", )
[docs] def single_profile( self, x_in: Dict[int, torch.Tensor], y_out: Dict[int, torch.Tensor], neuron_counts: sp.coo_matrix, ldx: int, threshold: float, ) -> Tuple[ Union[sp.coo_matrix, Tuple[sp.coo_matrix, sp.coo_matrix]], sp.coo_matrix, sp.coo_matrix, ]: """ Profiles a single layer Parameters ---------- x_in : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width y_out : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width neuron_counts : sp.coo_matrix Matrix representing the influential neurons in the layer ldx : int Layer number of the layer to be profiled threshold : float Percentage of contribution to track in a profile Returns ------- neuron_counts : sp.coo_matrix or tuple of sp.coo_matrix synapse_counts : sp.coo_matrix synapse_weights : sp.coo_matrix """ # get the appropriate contrib function for the module func = getattr(self.__class__, self.layerdict[ldx][1]) # take index as is for FC layer if func is ElementProfiler.contrib_linear: infl_idx = torch.LongTensor(neuron_counts.col) # unravel (channel, flat spatial) to (channel, row, col) for conv. layer else: h, w = y_out[ldx][0].shape[1:] row_idx, col_idx = np.unravel_index(neuron_counts.col, (h, w)) infl_idx = torch.LongTensor( np.stack((neuron_counts.row, row_idx, col_idx)).T, ) # send influential indices to correct device infl_idx = infl_idx.to(self.device) # call contrib function to return neuron counts and synapse counts/weights return func( self, x_in, y_out, infl_idx, self.layerdict[ldx][0], threshold=threshold, )
[docs] def contrib_linear( self, x_in: Dict[int, torch.Tensor], y_out: Dict[int, torch.Tensor], infl_neurons: torch.Tensor, layer: List[str], threshold: float = 0.1, ) -> Tuple[sp.coo_matrix, sp.coo_matrix, sp.coo_matrix]: """ Profile output neurons from a linear layer Parameters ---------- x_in : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width y_out : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width infl_neurons : torch.Tensor tensor containing indices of influential neurons in y_out dimensions: num_influential layer : List[str] list containing single key in self.model.available_modules() dictionary threshold : float, default=0.1 Returns ------- neuron_counts : sp.coo_matrix synapse_counts : sp.coo_matrix synapse_weights : sp.coo_matrix """ if len(y_out) != 1 or len(x_in) != 1: raise NotImplementedError( "contrib_linear requires x_in and y_out to have exactly one layer key each" ) y_ldx = list(y_out.keys())[0] y_out = y_out[y_ldx] x_ldx = list(x_in.keys())[0] x_in = x_in[x_ldx] with torch.no_grad(): # grab linear module linear = self.model.available_modules()[layer[0]] # grab weights and biases W = linear._parameters["weight"] B = linear._parameters["bias"] # check if x_in is conv layer conv_input = len(x_in[0].shape) > 1 # define dimensions if conv_input: in_channels, h_in, w_in = x_in[0].shape in_elements = in_channels * h_in * w_in # if x_in is conv layer, flatten x_in = x_in[0].flatten().unsqueeze(0) else: in_elements = x_in[0].shape[0] out_elements = y_out[0].shape[0] # get number of influential neurons num_infl = infl_neurons.shape[0] # multiply inputs by weights associated with influential neurons z = x_in[0] * W[infl_neurons] # ignore negative values z = torch.where(z > 0, z, torch.zeros(z.shape, device=self.device)) # sort by contribution ordsmat_vals, ordsmat_indices = torch.sort(z, descending=True) # take the cumsum cumsum = torch.cumsum(ordsmat_vals, dim=1) # find the threshold goal goal = threshold * y_out[0, infl_neurons] # find the indices within the threshold goal if B is not None: bool_accept = cumsum + B[infl_neurons].unsqueeze(-1) <= goal.unsqueeze( -1 ) else: bool_accept = cumsum <= goal.unsqueeze(-1) accept = torch.sum(bool_accept, dim=1) # if accept == in_elements, all values taken as contributors # subtract 1 in this case to avoid IndexError when adding additional accept accept = torch.where(accept < in_elements, accept, accept - 1) # add additional accept, ie accept + 1 bool_accept[range(num_infl), accept] = True # normalize by total sum of all contributions ordsmat_vals /= cumsum[range(num_infl), accept].unsqueeze(-1) # grab accepted contributor values and indices ordsmat_vals = ordsmat_vals[bool_accept] contrib_idx = ordsmat_indices[bool_accept] # send indices and values to cpu if necessary if self.device != "cpu": accept = accept.cpu() ordsmat_vals = ordsmat_vals.cpu() contrib_idx = contrib_idx.cpu() infl_neurons = infl_neurons.cpu() # repeat each influential neuron once for each of its accepted contributors infl_idx = np.repeat(infl_neurons, accept + 1) # define shape of synapse counts/weights shape = (out_elements, in_elements) # construct synapse weights and counts synapse_weights = sp.coo_matrix( (ordsmat_vals, (infl_idx, contrib_idx)), shape=shape, ) synapse_weights.eliminate_zeros() synapse_counts = sp.coo_matrix( ( np.ones(synapse_weights.data.shape), (synapse_weights.row, synapse_weights.col), ), shape=shape, dtype=int, ) # construct neuron counts by summing over columns of synapse counts neuron_counts = sp.coo_matrix( sp.csc_matrix(synapse_counts).sum(axis=0), dtype=int ) # reshape neuron counts to in_channels x h_in * w_in if x_in is a conv layer if conv_input: neuron_counts = neuron_counts.reshape((in_channels, h_in * w_in)) return neuron_counts, synapse_counts, synapse_weights
[docs] def contrib_conv2d( self, x_in: Dict[int, torch.Tensor], y_out: Dict[int, torch.Tensor], infl_neurons: torch.Tensor, layer: List[str], threshold: float = 0.1, ) -> Tuple[sp.coo_matrix, sp.coo_matrix, sp.coo_matrix]: """ Profile a single output neuron from a 2D convolutional layer Parameters ---------- x_in : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width y_out : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width infl_neurons : torch.Tensor tensor containing indices of influential neurons in y_out dimensions: num_influential x 3 (channel, row, col) layer : List[str] list containing keys in self.model.available_modules() dictionary, corresponding to a convolutional module and an activation module threshold : float, default=0.1 Returns ------- neuron_counts : sp.coo_matrix neuron_weights : sp.coo_matrix synapse_counts : sp.coo_matrix Note ---- Only implemented for convolution using filters with same height and width and strides equal in both dimensions and padding equal in all dimensions """ if len(y_out) != 1 or len(x_in) != 1: raise NotImplementedError( "contrib_conv2d requires x_in and y_out to have exactly one layer key each" ) y_ldx = list(y_out.keys())[0] y_out = y_out[y_ldx] x_ldx = list(x_in.keys())[0] x_in = x_in[x_ldx] with torch.no_grad(): # grab convolutional module conv = self.model.available_modules()[layer[0]] # grab weights and biases W = conv._parameters["weight"] B = conv._parameters["bias"] # assumption is that kernel size, stride are equal in both dimensions # and padding preserves input size kernel_size = conv.kernel_size[0] stride = conv.stride[0] padding = conv.padding[0] dilation = conv.dilation[0] # define dimensions in_channels, h_in, w_in = x_in[0].shape out_channels, h_out, w_out = y_out[0].shape # get number of influential neurons num_infl = infl_neurons.shape[0] # get channel, row, col indices of influential neurons ch, i, j = infl_neurons.unbind(dim=1) # W dims are [#filters=out_channels, #channels=in_channels, kernel_size, kernel_size] W = W[ch] B = B[ch] if B is not None else torch.Tensor() # find receptive fields for each influential neuron # rfield dimensions: num_infl x in_channels x kernel_size x kernel_size rfield = submatrix_generator(x_in, stride, kernel_size, padding)(i, j) # convolve weights and receptive fields z = W * rfield # order neurons in receptive field by greatest contribution # ordsmat dimensions: num_infl x in_channels*kernel_size^2 ordsmat_vals, ordsmat_indices = torch.sort( z.view(num_infl, in_channels * kernel_size**2), dim=1, descending=True, ) # take the cumsum and normalize by the total sum to find the threshold goal cumsum = torch.cumsum(ordsmat_vals, dim=1) totalsum = cumsum[:, -1].unsqueeze(-1) goals = cumsum / totalsum # find the indices within the threshold goal bool_accept = goals <= threshold accept = torch.sum(bool_accept, dim=1) # if accept == kernel_size**2, all values taken as contributors # subtract 1 in this case to avoid IndexError when adding additional accept accept = torch.where(accept < kernel_size**2, accept, accept - 1) # add additional accept, ie accept + 1 bool_accept[range(len(accept)), accept] = True # normalize by total sum of all accepted contributions ordsmat_vals /= cumsum[range(num_infl), accept].unsqueeze(-1) # convert flattened contributor indices to index in receptive field ords_ch, ords_row, ords_col = get_index(ordsmat_indices, kernel_size) # convert receptive field index to full index in x_in ordsi = ords_row + stride * i.unsqueeze(-1) - padding ordsj = ords_col + stride * j.unsqueeze(-1) - padding # grab accepted contributor values and (channel, row, col) indices ords_ch = ords_ch[bool_accept] ordsi = ordsi[bool_accept] ordsj = ordsj[bool_accept] ordsmat_vals = ordsmat_vals[bool_accept] # send indices and values to cpu if necessary if self.device != "cpu": accept = accept.cpu() ords_ch = ords_ch.cpu() ordsi = ordsi.cpu() ordsj = ordsj.cpu() ordsmat_vals = ordsmat_vals.cpu() ch = ch.cpu() i = i.cpu() j = j.cpu() # repeat each influential (channel, row, col) index once for each of its # accepted contributors ch = np.repeat(ch, accept + 1) i = np.repeat(i, accept + 1) j = np.repeat(j, accept + 1) # identify and remove padding indices, which have either row or col index # outside of the range [0, #row/col) if padding > 0: valid_idx = ( (ordsi >= 0) & (ordsi < h_in) & (ordsj >= 0) & (ordsj < w_in) ) ords_ch = ords_ch[valid_idx] ordsi = ordsi[valid_idx] ordsj = ordsj[valid_idx] ordsmat_vals = ordsmat_vals[valid_idx] ch = ch[valid_idx] i = i[valid_idx] j = j[valid_idx] # flatten all influential and contributor indices infl_idx = np.ravel_multi_index((ch, i, j), (out_channels, h_out, w_out)) contrib_idx = np.ravel_multi_index( (ords_ch, ordsi, ordsj), (in_channels, h_in, w_in) ) # define shape of synapse counts/weights shape = (out_channels * h_out * w_out, in_channels * h_in * w_in) # construct synapse weights and counts synapse_weights = sp.coo_matrix( (ordsmat_vals, (infl_idx, contrib_idx)), shape=shape ) synapse_weights.eliminate_zeros() synapse_counts = sp.coo_matrix( ( np.ones(synapse_weights.data.shape), (synapse_weights.row, synapse_weights.col), ), shape=shape, dtype=int, ) # construct neuron counts by summing over columns of synapse counts # and reshaping to in_channels x h_in * w_in neuron_counts = sp.coo_matrix( sp.csc_matrix(synapse_counts).sum(axis=0), dtype=int ).reshape(in_channels, h_in * w_in) return neuron_counts, synapse_counts, synapse_weights
[docs] def contrib_max2d( self, x_in: Dict[int, torch.Tensor], y_out: Dict[int, torch.Tensor], infl_neurons: torch.Tensor, layer: List[str], threshold: Optional[float] = None, ) -> Tuple[sp.coo_matrix, sp.coo_matrix, sp.coo_matrix]: """ Draws synaptic connections between the given influential neurons in a 2D max pooling layer and their contributors in a previous layer Parameters ---------- x_in : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width y_out : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width infl_neurons : torch.Tensor tensor containing indices of influential neurons in y_out dimensions: num_influential x 3 (channel, row, col) layer : List[str] list containing single key in self.model.available_modules() dictionary threshold : float, optional not used, placeholder for uniformity in arguments Returns ------- neuron_counts : sp.coo_matrix synapse_counts : sp.coo_matrix synapse_weights : sp.coo_matrix """ if len(y_out) != 1 or len(x_in) != 1: raise NotImplementedError( "contrib_max2d requires x_in and y_out to have exactly one layer key each" ) y_ldx = list(y_out.keys())[0] y_out = y_out[y_ldx] x_ldx = list(x_in.keys())[0] x_in = x_in[x_ldx] with torch.no_grad(): # grab max pooling module maxpool = self.model.available_modules()[layer[0]] # assumption is that kernel size, stride are equal in both dimensions # and padding preserves input size kernel_size = maxpool.kernel_size stride = maxpool.stride padding = maxpool.padding # define dimensions, in channels and out channels in_channels, h_in, w_in = x_in[0].shape out_channels, h_out, w_out = y_out[0].shape # get number of influential neurons num_infl = infl_neurons.shape[0] # get channel, row, col indices of influential neurons ch, i, j = infl_neurons.unbind(dim=1) # find receptive fields for each influential neuron # rfield dimensions: num_infl x kernel_size x kernel_size rfield = submatrix_generator(x_in, stride, kernel_size, padding)(i, j)[ range(num_infl), ch ] # find max val from each receptive field maxval, maxidx = torch.max(rfield.view(num_infl, kernel_size**2), dim=1) # convert index of max vals in receptive field to full index in x_in maxi = (maxidx // kernel_size + stride * i) - padding maxj = (maxidx % kernel_size + stride * j) - padding # send indices and values to cpu if necessary if self.device != "cpu": maxi = maxi.cpu() maxj = maxj.cpu() maxval = maxval.cpu() ch = ch.cpu() i = i.cpu() j = j.cpu() # identify and remove padding indices, which have either row or col index # outside of the range [0, #row/col) if padding > 0: valid_idx = (maxi >= 0) & (maxi < h_in) & (maxj >= 0) & (maxj < w_in) maxi = maxi[valid_idx] maxj = maxj[valid_idx] maxval = maxval[valid_idx] ch = ch[valid_idx] i = i[valid_idx] j = j[valid_idx] # flatten all influential and contributor indices infl_idx = np.ravel_multi_index((ch, i, j), (out_channels, h_out, w_out)) contrib_idx = np.ravel_multi_index( (ch, maxi, maxj), (in_channels, h_in, w_in) ) # define shape of synapse counts/weights shape = (out_channels * h_out * w_out, in_channels * h_in * w_in) # construct synapse weights and counts synapse_weights = sp.coo_matrix( (maxval, (infl_idx, contrib_idx)), shape=shape ) synapse_weights.eliminate_zeros() synapse_counts = sp.coo_matrix( ( np.ones(synapse_weights.data.shape), (synapse_weights.row, synapse_weights.col), ), shape=shape, dtype=int, ) # construct neuron counts by summing over columns of synapse counts # and reshaping to in_channels x h_in * w_in neuron_counts = sp.coo_matrix( sp.csc_matrix(synapse_counts).sum(axis=0), dtype=int ).reshape(in_channels, h_in * w_in) return neuron_counts, synapse_counts, synapse_weights
[docs] def contrib_adaptive_avg_pool2d( self, x_in: Dict[int, torch.Tensor], y_out: Dict[int, torch.Tensor], infl_neurons: torch.Tensor, layer: List[str], threshold: float = 0.1, ) -> Tuple[sp.coo_matrix, sp.coo_matrix, sp.coo_matrix]: """ Draws synaptic connections between the given influential neurons in a 2D adaptive average pooling layer and their contributors in a previous layer Parameters ---------- x_in : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width y_out : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width infl_neurons : torch.Tensor tensor containing indices of influential neurons in y_out dimensions: num_influential x 3 (channel, row, col) layer : List[str] list containing single key in self.model.available_modules() dictionary threshold : float, default=0.1 Returns ------- neuron_counts : sp.coo_matrix synapse_counts : sp.coo_matrix synapse_weights : sp.coo_matrix """ if len(y_out) != 1 or len(x_in) != 1: raise NotImplementedError( "contrib_adaptive_avg_pool2d requires x_in and y_out to have exactly " + "one layer key each" ) y_ldx = list(y_out.keys())[0] y_out = y_out[y_ldx] x_ldx = list(x_in.keys())[0] x_in = x_in[x_ldx] with torch.no_grad(): # grab adaptive average pooling module avgpool = self.model.available_modules()[layer[0]] # define dimensions, in channels and out channels in_channels, h_in, w_in = x_in[0].shape out_channels, h_out, w_out = y_out[0].shape # grab dimensions of avgpool from hyperparameters output_size = avgpool.output_size[0] input_size = h_in stride = input_size // output_size kernel_size = input_size - (output_size - 1) * stride # get number of influential neurons num_infl = infl_neurons.shape[0] # get channel, row, col indices of influential neurons ch, i, j = infl_neurons.unbind(dim=1) # find receptive field for each influential neuron # rfield dimensions: num_infl x kernel_size x kernel_size rfield = submatrix_generator(x_in, stride, kernel_size)(i, j)[ range(num_infl), ch ] # only consider values > 0 rfield = torch.where( rfield > 0, rfield, torch.zeros(rfield.shape, device=self.device) ) # order neurons in receptive field by greatest normalized contribution ordsmat_vals, ordsmat_indices = torch.sort( rfield.view(num_infl, kernel_size**2) / kernel_size**2, dim=1, descending=True, ) # take the cumsum and normalize by the total sum to find the threshold goal cumsum = torch.cumsum(ordsmat_vals, dim=1) totalsum = cumsum[:, -1].unsqueeze(-1) goals = cumsum / totalsum # find the indices within the threshold goal bool_accept = goals <= threshold accept = torch.sum(bool_accept, dim=1) # if accept == kernel_size**2, all values taken as contributors # subtract 1 in this case to avoid IndexError when adding additional accept accept = torch.where(accept < kernel_size**2, accept, accept - 1) # add additional accept, ie accept + 1 bool_accept[range(num_infl), accept] = True # normalize by total sum of all accepted contributions ordsmat_vals /= cumsum[range(num_infl), accept].unsqueeze(-1) # convert contributor indices in receptive field to full index in x_in ordsi = ordsmat_indices // kernel_size + stride * i.unsqueeze(-1) ordsj = ordsmat_indices % kernel_size + stride * j.unsqueeze(-1) # grab accepted contributor values and (channel, row, col) indices ordsi = ordsi[bool_accept] ordsj = ordsj[bool_accept] ordsmat_vals = ordsmat_vals[bool_accept] # send indices and values to cpu if necessary if self.device != "cpu": accept = accept.cpu() ordsi = ordsi.cpu() ordsj = ordsj.cpu() ordsmat_vals = ordsmat_vals.cpu() ch = ch.cpu() i = i.cpu() j = j.cpu() # repeat each influential (channel, row, col) index once for each of its # accepted contributors ch = np.repeat(ch, accept + 1) i = np.repeat(i, accept + 1) j = np.repeat(j, accept + 1) # flatten all influential and contributor indices infl_idx = np.ravel_multi_index((ch, i, j), (out_channels, h_out, w_out)) contrib_idx = np.ravel_multi_index( (ch, ordsi, ordsj), (in_channels, h_in, w_in) ) # define shape of synapse counts/weights shape = (out_channels * h_out * w_out, in_channels * h_in * w_in) # construct synapse weights and counts synapse_weights = sp.coo_matrix( (ordsmat_vals, (infl_idx, contrib_idx)), shape=shape ) synapse_weights.eliminate_zeros() synapse_counts = sp.coo_matrix( ( np.ones(synapse_weights.data.shape), (synapse_weights.row, synapse_weights.col), ), shape=shape, dtype=int, ) # construct neuron counts by summing over columns of synapse counts # and reshaping to in_channels x h_in * w_in neuron_counts = sp.coo_matrix( sp.csc_matrix(synapse_counts).sum(axis=0), dtype=int ).reshape(in_channels, h_in * w_in) return neuron_counts, synapse_counts, synapse_weights
[docs] def contrib_resnetadd( self, x_in: Dict[int, torch.Tensor], y_out: Dict[int, torch.Tensor], infl_neurons: torch.Tensor, layer: Optional[List[str]] = None, threshold: Optional[float] = None, ) -> Tuple[Tuple[sp.coo_matrix, sp.coo_matrix], sp.coo_matrix, sp.coo_matrix]: """ Draws synaptic connections between the given influential neurons in a ResNet add layer and their contributors in a previous layer Parameters ---------- x_in : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width y_out : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width infl_neurons : torch.Tensor tensor containing indices of influential neurons in y_out dimensions: num_influential x 3 (channel, row, col) layer : List[str], optional not used, placeholder for uniformity in arguments threshold : float, optional not used, placeholder for uniformity in arguments Returns ------- neuron_counts synapse_counts synapse_weights Raises ------ NotImplementedError Raises error if len(x_in) != 2 or len(y_out) != 1 """ if len(y_out) != 1 or len(x_in) != 2: raise NotImplementedError( "contrib_resnetadd requires y_out to have exactly one layer key and " + "x_in to have exactly two layer keys" ) y_ldx = list(y_out.keys())[0] y_out = y_out[y_ldx] x1_ldx, x2_ldx = sorted(x_in.keys()) # define dimensions num_channels, h, w = y_out[0].shape with torch.no_grad(): # combine activations from input layers along new dimension x_in = torch.cat((x_in[x1_ldx], x_in[x2_ldx])) # get number of influential neurons num_infl = infl_neurons.shape[0] # get channel, row, col indices ch, i, j = infl_neurons.unbind(dim=1) # only take elements corresponding to influentials in y_out vals = x_in[:, ch, i, j] # construct neuron counts and synapse counts/weights for each input layer # when the element val in the first input layer is greater than the second, # fully attribute influence to the corresponding element in the first layer nc1, sc1, sw1 = self.contrib_identity( {x1_ldx: x_in[0].unsqueeze(0)}, {y_ldx: y_out}, infl_neurons[vals[0] > vals[1]], ) # when the element val in the second input layer is greater than or equal to the # first, fully attribute influence to the corresponding element in the second layer nc2, sc2, sw2 = self.contrib_identity( {x2_ldx: x_in[1].unsqueeze(0)}, {y_ldx: y_out}, infl_neurons[vals[0] <= vals[1]], ) # return neuron counts as tuple, synapse counts/weights as block diagonal matrices neuron_counts = (nc1, nc2) synapse_counts = sp.block_diag((sc1, sc2)) synapse_weights = sp.block_diag((sw1, sw2)) return neuron_counts, synapse_counts, synapse_weights
[docs] def contrib_identity( self, x_in: Dict[int, torch.Tensor], y_out: Dict[int, torch.Tensor], infl_neurons: torch.Tensor, layer: List[str] = None, threshold: Optional[float] = None, ) -> Tuple[sp.coo_matrix, sp.coo_matrix, sp.coo_matrix]: """ Pass through to keep influential neurons from one layer fixed into the next. Used for normalization layers Parameters ---------- x_in : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width y_out : Dict[int, torch.Tensor] dict where key is layer, value is tensor dimensions: batchsize,channels,height,width infl_neurons : torch.Tensor tensor containing indices of influential neurons in y_out dimensions: num_influential x 3 (channel, row, col) layer : List[str], optional not used, placeholder for uniformity in arguments threshold : float, optional not used, placeholder for uniformity in arguments Returns ------- neuron_counts synapse_counts synapse_weights """ if len(y_out) != 1 or len(x_in) != 1: raise NotImplementedError( "contrib_identity requires x_in and y_out to have exactly one layer key each" ) y_ldx = list(y_out.keys())[0] y_out = y_out[y_ldx] x_ldx = list(x_in.keys())[0] x_in = x_in[x_ldx] if y_out[0].shape != x_in[0].shape: raise NotImplementedError( "contrib_identity requires x_in and y_out to have the same shape" ) with torch.no_grad(): # define dimensions num_channels, h, w = y_out[0].shape # get number of influential neurons num_infl = infl_neurons.shape[0] # get channel, row, col indices of influential neurons ch, i, j = infl_neurons.unbind(dim=1) # send indices to cpu if necessary if self.device != "cpu": ch = ch.cpu() i = i.cpu() j = j.cpu() # flatten influential indices infl_flat = np.ravel_multi_index((ch, i, j), (num_channels, h, w)) # define shape of synapse counts and weights shape = (num_channels * h * w, num_channels * h * w) # construct synapse weights and counts synapse_weights = sp.coo_matrix( (np.ones(num_infl), (infl_flat, infl_flat)), shape=shape ) synapse_counts = sp.coo_matrix( (np.ones(num_infl), (infl_flat, infl_flat)), shape=shape, dtype=int ) # construct neuron counts by summing over columns of synapse counts # and reshaping to num_channels x h * w neuron_counts = sp.coo_matrix( sp.csc_matrix(synapse_counts).sum(axis=0), dtype=int, ).reshape(num_channels, h * w) return neuron_counts, synapse_counts, synapse_weights