safekit
0.01
tf_ops
batch
graph_training_utils
util
models
features
safekit
Docs
»
Index
Index
_
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
W
_
__call__() (graph_training_utils.EarlyStop method)
(util.ExponentialRunningMean method)
(util.RunningMean method)
A
avg_state() (batch.StateTrackingBatcher method)
B
batch (module)
batch_normalize() (in module tf_ops)
batch_softmax_dist_loss() (in module tf_ops)
bidir_lm_rnn() (in module tf_ops)
blank_slate() (batch.StateTrackingBatcher method)
C
collect_stragglers() (batch.OnlineLMBatcher method)
ContextRNN (class in tiered_lm)
D
DayBatcher (class in batch)
diag_mvn_loss() (in module tf_ops)
dnn() (in module tf_ops)
dropout() (in module tf_ops)
E
EarlyStop (class in graph_training_utils)
eval() (graph_training_utils.ModelRunner method)
event_padding_random() (batch.StateTrackingBatcher method)
ExponentialRunningMean (class in util)
eyed_mvn_loss() (in module tf_ops)
F
fan_scale() (in module tf_ops)
flush_batch() (batch.OnlineLMBatcher method)
full_mvn_loss() (in module tf_ops)
G
get_batch_from_overflow() (batch.OnlineLMBatcher method)
get_eval_indices() (batch.StateTrackingBatcher method)
get_events() (batch.StateTrackingBatcher method)
get_feed_dict() (in module graph_training_utils)
get_mask() (in module util)
get_multivariate_loss_names() (in module util)
get_new_events() (batch.StateTrackingBatcher method)
get_state_triples() (batch.OnlineLMBatcher method)
get_states() (batch.StateTrackingBatcher method)
graph_training_utils (module)
H
headers (merge_streams.Merge attribute)
I
ident() (in module tf_ops)
J
join_multivariate_inputs() (in module tf_ops)
L
layer_norm() (in module tf_ops)
layer_norm_rnn() (in module tf_ops)
lm_rnn() (in module tf_ops)
M
make_feature_spec() (in module util)
make_key_map() (batch.StateTrackingBatcher method)
make_loss_spec() (in module util)
Merge (class in merge_streams)
merge_streams (module)
ModelRunner (class in graph_training_utils)
multivariate_loss() (in module tf_ops)
N
new_batch() (batch.NormalizingReplayOnlineBatcher method)
(batch.OnlineLMBatcher method)
(batch.StateTrackingBatcher method)
next_batch() (batch.DayBatcher method)
(batch.NormalizingReplayOnlineBatcher method)
(batch.OnlineBatcher method)
(batch.OnlineLMBatcher method)
(batch.StateTrackingBatcher method)
next_event() (merge_streams.Merge method)
NormalizingReplayOnlineBatcher (class in batch)
O
OnlineBatcher (class in batch)
OnlineLMBatcher (class in batch)
P
package_data() (batch.StateTrackingBatcher method)
Parser (class in util)
R
replay (batch.StateTrackingBatcher attribute)
replay_batch() (batch.NormalizingReplayOnlineBatcher method)
(batch.StateTrackingBatcher method)
return_parser() (in module simple_lm)
(in module tiered_lm)
RunningMean (class in util)
S
simple_lm (module)
softmax_dist_loss() (in module tf_ops)
split_batch() (in module batch)
StateTrackingBatcher (class in batch)
swapping_rnn() (in module tf_ops)
T
tf_ops (module)
tiered_lm (module)
tiered_lm() (in module tiered_lm)
train_step() (graph_training_utils.ModelRunner method)
true_bptt_rnn() (in module tf_ops)
U
update_state_triples() (batch.OnlineLMBatcher method)
update_states() (batch.StateTrackingBatcher method)
util (module)
W
weights() (in module tf_ops)
write_results() (in module simple_lm)