Autonomous

Nonlinear ODEs. Wrapper for emulator dynamical models

  • Internal Emulators - in house ground truth equations

  • External Emulators - third party models

References:

class autonomous.Autoignition(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

ODE describing pulsating instability in open-ended combustor.

  • Koch, J., Kurosaka, M., Knowlen, C., Kutz, J.N., “Multiscale physics of rotating detonation waves: Autosolitons and modulational instabilities,” Physical Review E, 2021

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.Brusselator1D(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Brusselator

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.ChuaCircuit(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Chua’s circuit

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.DoublePendulum(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Double Pendulum https://scipython.com/blog/the-double-pendulum/

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.Duffing(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Duffing equation

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.Lorenz96(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Lorenz 96 model

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.LorenzSystem(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Lorenz System

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.LotkaVolterra(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Lotka–Volterra equations, also known as the predator–prey equations

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.ODE_Autonomous(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

base class autonomous ODE

simulate(ninit=None, nsim=None, ts=None, x0=None)[source]
Parameters:
  • nsim – (int) Number of steps for open loop response

  • ninit – (float) initial simulation time

  • ts – (float) step size, sampling time

  • x0 – (float) state initial conditions

Returns:

The response matrices, i.e. X

class autonomous.Pendulum(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Simple pendulum.

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.RosslerAttractor(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Rössler attractor

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.ThomasAttractor(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Thomas’ cyclically symmetric attractor

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.UniversalOscillator(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Harmonic oscillator

equations(x, t)[source]

Define equations defining the dynamical system

class autonomous.VanDerPol(nsim=1001, ninit=0, ts=0.1, seed=59)[source]

Van der Pol oscillator

equations(x, t)[source]

Define equations defining the dynamical system