Autonomous¶
Nonlinear ODEs. Wrapper for emulator dynamical models
Internal Emulators - in house ground truth equations
External Emulators - third party models
References:
- class autonomous.Autoignition(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
ODE describing pulsating instability in open-ended combustor.
Koch, J., Kurosaka, M., Knowlen, C., Kutz, J.N., “Multiscale physics of rotating detonation waves: Autosolitons and modulational instabilities,” Physical Review E, 2021
- class autonomous.DoublePendulum(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
Double Pendulum https://scipython.com/blog/the-double-pendulum/
- class autonomous.LorenzSystem(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
Lorenz System
- class autonomous.LotkaVolterra(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
Lotka–Volterra equations, also known as the predator–prey equations
- class autonomous.ODE_Autonomous(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
base class autonomous ODE
- class autonomous.ThomasAttractor(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
Thomas’ cyclically symmetric attractor
- class autonomous.UniversalOscillator(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
Harmonic oscillator
- class autonomous.VanDerPol(nsim=1001, ninit=0, ts=0.1, seed=59)[source]¶
Van der Pol oscillator