
glmnetLRC: Lasso and elastic-net logistic regression classification

with an arbitrary loss function

Landon Sego, Alexander Venzin

March 2016

1 Introduction

The glmnetLRC package makes it easy to construct a binary classifier from virtually any number of quanti-

tative predictors that will assign an example, or observation, to one of two classes. It extends the glmnet

package by making it possible to train lasso or elastic-net logistic regression classifiers (LRC’s) using a cus-

tomized, discrete loss function to measure the classification error. This allows users to assign unique loss

values to false positive and false negative errors.

The logistic regression parameter estimates are obtained by maximizing the elastic-net penalized likeli-

hood function that contains several tuning parameters. These tuning parameters are estimated by minimizing

the expected loss, which is calculated using cross validation. This approach was originally implemented to

automate the process of determining the curation quality of mass spectrometry samples (Amidan et al.,

2014).

We present in detail the algorithm used by the glmnetLRC package to identify the optimal parameter

estimates for a logistic regression classifier (LRC) with variables selection implemented by an elastic-net.

2 The model

We begin by defining a number of variables. Let i = 1, . . . , N index the observations in a training dataset.

Let yi = 1 indicate that observation i belongs to category “1” and yi = 0 indicate that it belongs to category

“0”. Per the logistic regression model, let

P (yi = 1) ≡ πi =
exp(β0 + βT1 xi)

1 + exp(β0 + βT1 xi)
(1)

where xi = (x1, . . . xK)T is a vector of predictors, or covariates, that influence πi, β0 is an intercept,

β1 = (β1, . . . , βK)T is a vector of logistic regression coefficients, and for notational convenience, β =

(β0, β1, . . . βK)T .

The estimate of the vector of regression parameters, β, is influenced by two other tuning parameters,

α and λ. For this reason, we will often write β as β(α, λ). The value of λ > 0 controls the weight of the

penalty of the log-likelihood function, while α controls the mixture of the ridge and lasso penalties. The

relationship between β, α, and λ will be clarified below. A final tuning parameter, τ ∈ (0, 1), provides a

threshold for the LRC such that if πi > τ , observation i is predicted to belong to class “1”.

1

3 Estimating the regression parameters

When we fit the elastic-net logistic regression model to the data, we obtain the estimator β̂(α, λ). Therefore,

let π̂i ≡ π
(
xi, β̂(α, λ)

)
denote the predicted probability that yi = 1. Then, if π̂i > τ , the LRC predicts that

yi = 1, otherwise it predicts that yi = 0. It will be useful to represent the predicted class of observation i as

ŷi ≡ f
(
xi, β̂(α, λ), τ

)
= I(π̂i>τ), where f can be thought of as the LRC. For the elastic-net, the estimate β̂

is the β that maximizes the penalized, binomial log-likelihood function:

β̂(α, λ) = arg max
β∈RK+1

[
`(xi,β)− λ

(
1− α

2

K∑
k=1

β2
k + α

K∑
k=1

|βk|
)]

(2)

where the unpenalized log-likelihood is given by

`(xi,β) =
1

N

N∑
i=1

[
yi
(
β0 + βT1 xi

)
− log

(
1 + exp(β0 + βT1 xi)

)]
(3)

Parenthetically, α = 1 is the lasso penalty, α = 0 is the ridge regression penalty, and 0 < α < 1 is a mixture

of the two. The penalty in (2) is the one specified in the documentation of the glmnet package (Hastie &

Qian, 2014).

4 Estimating the tuning parameters

The optimal values of the tuning parameters, α, λ, and τ , are obtained by minimizing the risk, or expected

loss, of the LRC, where the risk is calculated via cross validation. Calculating risk requires that we define a

discrete loss function, L(y, ŷ) as follows:

ŷ = 0 ŷ = 1

y = 0 0 κ0

y = 1 κ1 0

with κ0 > 0 and κ1 > 0 chosen to reflect the severity of false-positive and false-negative errors, respectively.

Setting κ0 = κ1 = 1 results in the commonly used 0-1 loss function. In the glmnetLRC package, L is specified

via a call to lossMatrix(), and the result is passed to the lossMat argument of glmnetLRC(). In fact, all four

elements of L can be specified as desired, i.e., the diagonal elements are not required to be 0, as suggested

above.

Cross validation is accomplished by randomly partitioning the data into M folds (non-overlapping and

exhaustive subsets), where each fold is tested using a model trained on the remaining folds. The value of M

is controlled by the cvFolds argument in glmnetLRC(). Following the presentation of Hastie, et al. (2008),

let

δ : {1, . . . , N} → {1, . . . ,M} (4)

map each observation in the training data to one of the folds. Let β̂
−m

(α, λ) represent the estimate of β

obtained by fitting the elastic-net logistic regression model to all the training data except the mth fold. The

cross validation estimate of the risk is given by

R(α, λ, τ) =

N∑
i=1

wiL
(
yi, f

(
xi, β̂

−δ(i)
(α, λ), τ

))/ N∑
i=1

wi (5)

2

where the weights wi are specified in the lossWeight argument to glmnetLRC(). The optimal estimates of

the tuning parameters are those that minimize the risk:

(α̂, λ̂, τ̂) = arg min
α,λ,τ

R(α, λ, τ) (6)

In practice, we calculate (α̂, λ̂, τ̂) by computing (5) over an irregular cube of discrete parameter values,

defined by the combination of three vectors: α × λ × τ . The point in the cube that minimizes the risk

becomes the estimate for (α, λ, τ). In the event there are ties for the lowest risk for two or more points in

the cube, points with τ nearer to 0.5 are preferred, and if that still doesn’t break the tie, points with larger

values of λ are preferred because they result in a more parsimonious model with fewer predictors. The values

of α and τ are specified by the alphaVec and tauVec arguments of glmnetLRC(), respectively. The values

of λ depend on each α and are chosen algorithmically by glmnet(), using the default values for the relevant

arguments in glmnet() and using the entire training dataset.

5 The final LRC model

So far in this discussion, we have made reference to a single random partition of the data, δ, into M folds.

Naturally, the estimates of the tuning parameters depend on δ. A different partition will yield different

estimates of the tuning parameters. To ensure the final LRC is robust to the random partitioning process,

we repeat the training process for multiple partitions, δ1, . . . , δJ , producing (α̂j , λ̂j , τ̂j) for j = 1, . . . , J . The

value of J is controlled by the cvReps argument in glmnetLRC(). We subsequently refer to the repetition of

the cross validation process as cross validation replication.

Calling the plot() method on the object returned by glmnetLRC() shows a pairs plot and univariate

histogram of the various (α̂j , λ̂j , τ̂j). This plot illustrates the consistency (or lack thereof) of the tuning

parameter estimates across cross validation replicates.

Once α̂j , λ̂j , and τ̂j are identified for all the cross validation replicates, the final estimate of the tuning

parameters is obtained by calculating the median of each one separately:

(α̂?, λ̂?, τ̂?) =
(
median

j
(α̂j), median

j
(λ̂j), median

j
(τ̂j)

)
(7)

The final estimator β̂(α̂?, λ̂?) is obtained by fitting all the training data (via (2)) using the final estimates

of the tuning parameters (7), which gives rise to the final LRC:

f? ≡ f
(
x, β̂(α̂?, λ̂?), τ̂?

)
(8)

Calling the predict() method on the object returned by glmnetLRC() uses f? to classify new observations.

Likewise, calling the coef() method on the object returned by glmnetLRC() returns β̂(α̂?, λ̂?).

6 The cross validation estimate of the risk

A measure of overall performance for the LRC is provided by the cross validation estimate of the risk. Using

the final tuning parameter estimates (α̂?, λ̂?) defined by (7), a corresponding set of regression parameter

estimates, β̂
−m
j (α̂?, λ̂?), are obtained using (2) for each of the M folds in replicate j. The estimate of the

risk for replicate j is given by applying (5) as follows:

Rj =

N∑
i=1

wiL
(
yi, f

(
xi, β̂

−δj(i)
j (α̂?, λ̂?), τ̂?

))/ N∑
i=1

wi (9)

3

The value of Rj is calculated for j = 1, . . . , J and summarized using the mean and standard deviation in the

usual way:

R̄ =
1

J

J∑
j=1

Rj , σR =

√∑J
j=1(Rj − R̄)2

J − 1
(10)

The values of R̄ and σR are obtained by calling glmnetLRC() with the argument estimateLoss = TRUE and

then printing the resulting object.

References

Amidan, B. G., Orton, D. J., LarMarche, B. L., Monroe, M. E., Moore, R. J., Venzin, A. M., . . . Payne,

S. H. (2014). Signatures for mass spectrometry data quality. Journal of Proteome Research, 13 (4),

2215-2222.

Hastie, T., & Qian, J. (2014). Glmnet Vignette. Retrieved 20 January 2016, from http://cran.fhcrc.org/

web/packages/glmnet/vignettes/glmnet beta.html

Hastie, T., Tibshirani, R., & Friedman, J. H. (2008). The Elements of Statistical Learning: Data Mining,

Inference, and Prediction (2nd ed.). Springer-Verlag.

4

